CardioSource WorldNews October 2015 | Page 28

CLINICAL NEWS American College of Cardiology Extended Learning ACCEL interviews and topical summaries of cardiology’s most interesting research areas Genetic Testing for HCM: What Do We Learn? And do genotype-negative patients have HCM? T here is the concept of big data, in which important knowledge can be gleaned from an analysis of the clinical experience of millions of patients. Then there is the explosion of molecular data in which one report by Ashley et al. presented the results of a single patient based on an analysis of 2.6 million single nucleotide polymorphisms.1 This suggests large—even humongous— untapped opportunities to use data to improve health outcomes A few years ago, the National Research Council proposed a new data network to integrate emerging research on the molecular makeup of diseases with clinical data on individual patients.2 Success here could drive the development of a more accurate classification of disease and ultimately enhance diagnosis and treatment. “Currently, a disconnect exists between the wealth of scientific advances in research and the incorporation of this information into the clinic,” said Susan Desmond-Hellmann, MD, MPH, co-chair of the committee that authored the report and Chancellor of the University of California, San Francisco, CA. “Often it can take years for biomedical research information to trickle to doctors and patients, and in the meantime wasteful health care expenditures are carried out for treatments that are only effective in specific subgroups.” In his 2015 State of the Union Address, U.S. President Barack Obama announced the Precision Medicine Initiative, a research effort to revolutionize how we improve health and treat disease. Launched with a $215 million investment, the concept of “precision medicine” (an evolution to what has been called personalized medicine) was used in that Nati onal Research Council monograph mentioned above,1 in which the authors explain that their use of “precision” was intended to avoid the implication that medications would be synthesized personally for single patients. Rather, they hoped to convey a broader concept that would include precisely tailoring therapies to subcategories of disease, often defined by genomics. BIOBANKING AND DATA SHARING Precision medicine will require a large cohort of individuals willing to share their electronic medical and genomic data. Recently, Euan A. Ashley, MD, of the Departments of Medicine and Genetics in California’s Stanford University, noted that the first generation of genomic data will mostly come from genotyping chips containing 1 million to 2 million previously identified genetic variants or enhanced exome sequencing, which targets the sequence of 26 CardioSource WorldNews the approximately 20,000 genes.3 Some countries, such as the United Kingdom and Denmark, already have large-scale biobanks. In the United States, Dr. Ashley noted that the Million Veteran Program reports recruitment currently at more than 300,000 individuals, with thousands having been sequenced and hundreds of thousands having been genotyped. Other U.S.-based cohorts include the eMERGE consortium (funded by the National Human Genome Research Institute), which combines electronic medical record data and genomic data from almost 200,000 individuals. Although challenges remain, results published by Dr. Ashley and colleagues suggest that wholegenome sequencing can yield useful and clinically relevant information for individual patients.1 HYPERTROPHIC CARDIOMYOPATHY Hypertrophic cardiomyopathy is an inherited disease of the heart muscle and among the most common Mendelian cardiac diseases, occurring in one in 500 people. Advances in genetics have facilitated identification of a subpopulation of patients with pathogenic variants in cardiac sarcomere genes. As Dr. Ashley noted recently in the Journal of the American College of Cardiology (along with Matthew T. Wheeler, MD, PhD) coding regions of numerous cardiac sarcomere genes are routinely sequenced in clinics today.4 Excluding those patients with discrete upper septal thickening, clearly pathogenic variants are identified in 30% to 50% of patients, thus marking a subset of “sarcomeric” HCM. Genetic testing can tell a lot, according to Dr. Ashley, ranging from important information regarding optimal management strategies to risk and response to drugs. As he and colleagues reported in JACC,5 for example, there are distinctive clinical and biophysical features that characterize HCM associated with thin-filament mutations that differ from the more common thick-filament disease. Thin-filament HCM is associated with less prominent and atypically distributed LV hypertrophy, increased LV fibrosis, higher likelihood of adverse LV remodeling leading to functional deterioration, and more frequent occurrence of triphasic LV filling, reflecting profound diastolic dysfunction. So do genotype negative patients have HCM? As Dr. Ashley explained, some patients may suffer from “HCM of the elderly.” Such patients were once referred to as having discrete upper septal hypertrophy. Today, a more accurate way of expressing that is discrete upper septal thickening where there is a sigmoid septum but LV mass and papillary muscles are often normal; gradients can be high and ventri- To listen to the interview with Euan A. Ashley, MD, visit the CSWN YouTube channel or scan the QR below. Interview conducted by Christopher M. Kramer, MD. culo-vascular stiffness is common, but family history is rare. What is this? A non-sarcomeric form of HCM? It’s sarcomeric, but the protein is unknown? Is it just hypertension or some complex genetic disease? Is it multifactorial disease or just a variation of normal? There is no simple answer, said Dr. Ashley. It is certainly associated with age but, when seen in isolation, it does not appear to have any effect on mortality. “There is no perfect answer,” he said, “but we all deal with this uncertainty.” Another group of genotype-negative patients are represented by a 17-year-old male who presented in his early teens with a significant family history, and family screening revealed even more cases than previously known. The patient had a moderate gradient, high LV mass, a lot of delayed-gadolinium enhancement, and ventricular tachycardia. At AHA.14, Dr. Ashley reported unpublished data from the Stanford Cardiome Study: they have found 64 HCM patients who are genotype negative. “These are the patients we scratch our heads over the most,” he said. “We see patients who appear to have classic hypertrophic cardiomyopathy: reverse curvature and asymmetry, but negative sarcomere sequencing—as we currently do sarcomere sequencing today.” It may be a coding variant in a gene of the cardiac sarcomere that is not on the sequencing panel. Maybe it’s a regulatory variant in a sarcomere gene or a variant in a non-sarcomere gene, such as a signaling gene. We know a number of signaling pathways that cause hypertrophy. Could some of them cause an asymmetric hypertrophy? Or maybe there is epigenetic modification of a sarcomere gene. At least we are probably confused at a higher level than was possible just a few years ago. He added, “We offer genetic testing to all our HCM patients at Stanford and spend a significant amount of time on family history and thinking about the whole family as our patient.” There is no clear answer, he admits, to the question of whether genotype-negative patients have HCM. “I am not sure I have answered that question for you.” Some do, he said, and some don’t; there is probably a useful debate to be had around the issue of semantics. Overall, Dr. Ashley said that development of methods integrating genetic and clinical data will assist clinical decision-making and represents a large step towards individualized medicine. The October 2015